Mathematics: Lines and Angles | Class: 9 | Chapter: 6 | Introduction | Theorem: 6.1 | Sums: 1 to 3




Question 1:




In the given figure, lines AB and CD intersect at O. If and  find ∠BOE and reflex ∠COE.

ANSWER:


Sum: 2

Question 2:




In the given figure, lines XY and MN intersect at O. If ∠POY =  and a:b = 2 : 3, find c.

ANSWER:

Let the common ratio between a and b be x.
∴ a = 2x, and b = 3x
XY is a straight line, rays OM and OP stand on it.
∴ ∠XOM + ∠MOP + ∠POY = 180º
b + a + ∠POY = 180º
3x + 2x + 90º = 180º
5x = 90º
x = 18º
a = 2x = 2 × 18 = 36º
b = 3x= 3 ×18 = 54º
MN is a straight line. Ray OX stands on it.
∴ b + c = 180º (Linear Pair)
54º + c = 180º


c = 180º − 54º = 126º
∴ c = 126º


Sum: 3

Question 3:




In the given figure, ∠PQR = ∠PRQ, then prove that ∠PQS = ∠PRT.


ANSWER:

In the given figure, ST is a straight line and ray QP stands on it.∴ ∠PQS + ∠PQR = 180º (Linear Pair)∠PQR = 180º − ∠PQS (1)∠PRT + ∠PRQ = 180º (Linear Pair)∠PRQ = 180º − ∠PRT (2)It is given that ∠PQR = ∠PRQ.Equating equations (1) and (2), we obtain180º − ∠PQS = 180  − ∠PRT∠PQS = ∠PRT

PK

Previous Post Next Post